Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds

نویسندگان

  • Florent Foucaud
  • George B. Mertzios
  • Reza Naserasr
  • Aline Parreau
  • Petru Valicov
چکیده

We consider the problems of finding optimal identifying codes, (open) locating-dominating sets and resolving sets of an interval or a permutation graph. In these problems, one asks to find a subset of vertices, normally called a solution set, using which all vertices of the graph are distinguished. The identification can be done by considering the neighborhood within the solution set, or by employing the distances to the solution vertices. Normally the goal is to minimize the size of the solution set then. Here we study the case of interval graphs, unit interval graphs, (bipartite) permutation graphs and cographs. For these classes of graphs we give tight lower bounds for the size of such solution sets depending on the order of the input graph. While such lower bounds for the general class of graphs are in logarithmic order, the improved bounds in these special classes are of the order of either quadratic root or linear in terms of number of vertices. Moreover, the results for cographs lead to linear-time algorithms to solve the considered problems on inputs that are cographs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms and Complexity for Metric Dimension and Location-domination on Interval and Permutation Graphs

We study the problems Locating-Dominating Set and Metric Dimension, which consist in determining a minimum-size set of vertices that distinguishes the vertices of a graph using either neighbourhoods or distances. We consider these problems when restricted to interval graphs and permutation graphs. We prove that both decision problems are NP-complete, even for graphs that are at the same time in...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

On the signed Roman edge k-domination in graphs

Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...

متن کامل

New results on metric-locating-dominating sets of graphs

A dominating set S of a graph is a metric-locating-dominating set if each vertex of the graph is uniquely distinguished by its distances from the elements of S, and the minimum cardinality of such a set is called the metric-locationdomination number. In this paper, we undertake a study that, in general graphs and specific families, relates metric-locating-dominating sets to other special sets: ...

متن کامل

Signed total Roman k-domination in directed graphs

Let $D$ be a finite and simple digraph with vertex set $V(D)$‎.‎A signed total Roman $k$-dominating function (STR$k$DF) on‎‎$D$ is a function $f:V(D)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each‎‎$vin V(D)$‎, ‎where $N^{-}(v)$ consists of all vertices of $D$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Theor. Comput. Sci.

دوره 668  شماره 

صفحات  -

تاریخ انتشار 2017